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We have performed large-scale Monte Carlo simulations on a two-dimensional generalized Ashkin-Teller
model to calculate the thermodynamic properties in the critical region near its transitions. The Ashkin-Teller
model has a pair of Ising spins at each site which interact with neighboring spins through pair-wise and
four-spin interactions. The model represents the interactions between orbital current loops in CuO2 plaquettes
of high-Tc cuprates, which order with a staggered magnetization Ms inside each unit cell in the underdoped
region of the phase diagram below a temperature T��x� which depends on doping. The pair of Ising spins per
unit cell represents the directions of the currents in the links of the current loops. The generalizations are the
inclusion of anisotropy in the pair-wise nearest-neighbor current-current couplings consistent with the symme-
tries of a square lattice and the next-nearest-neighbor pair-wise couplings. We use the Binder cumulant to
estimate the correlation length exponent � and the order-parameter exponent �. Our principal results are that in
a range of parameters; the Ashkin-Teller model as well as its generalization has an order-parameter suscepti-
bility which diverges as T→T� and an order parameter below T�. Importantly, however, there is no divergence
in the specific heat. This puts the properties of the model in accord with the experimental results in the
underdoped cuprates. We also calculate the magnitude of the “bump” in the specific heat in the critical region
to put limits on its observability. Finally, we show that the staggered magnetization couples to the uniform
magnetization M0 such that the latter has a weak singularity at T� and also displays a wide critical region, also
in accord with recent experiments.
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I. INTRODUCTION

It has been proposed1,2 that the properties of the cuprate
compounds are controlled by the onset of a time-reversal and
inversion violating order parameter below a temperature T
=T��x�, which depends on the doping x. T��x�→0 for x
→xc in the superconducting range of compositions, thus de-
fining a quantum critical point. The quantum critical fluctua-
tions associated with the breakup of the specific order pro-
posed was shown3 to be of the scale-invariant form
hypothesized to lead to a marginal Fermi liquid,4 which ex-
plains the anomalous transport properties of these com-
pounds. T��x� is identified with the observed onset of the
pseudogap properties in the cuprates.

A major difficulty in accepting these ideas is that there is
no observed specific-heat divergence near T��x� in any cu-
prate. On the other hand, there now exists significant evi-
dence for long-range order with a spatial symmetry consis-
tent with orbital currents of the form shown in Fig. 1 in three
different families of cuprates5–8 which have been investi-
gated so far. There is also evidence of a weak singularity at
T��x� in the uniform magnetic susceptibility.9

In view of this situation, it is important to investigate
whether or not the proposed models for these broken sym-
metries are consistent simultaneously with long-range order
without an observable signal in the specific heat in the mea-
surements made hitherto, and also whether it does give rise
to observable features in the uniform magnetization induced
by an external magnetic field.9

The particular form of proposed hidden order is one of
spontaneously generated fluxes in the O-Cu-O plaquettes of

the CuO2 unit cell such that currents flow in two oppositely
directed loops in each unit cell, as depicted for one of the
four possible domains in Fig. 1. �See also Fig. 1 of Refs. 2
and 10.� The staggered orbital magnetic moments within
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FIG. 1. �Color online� The circulating current phase �II �Ref. 2�.
The Cu sites are red �large� circles while O sites are blue �small�
circles. The unit cell is shown by the dashed square. A staggered
magnetic-moment pattern within each unit cell that repeats from
unit cell to unit cell �the curl of the directed circles� is indicated.
The currents Jx and Jy represent the horizontal and vertical currents,
respectively, to be used in the derived effective model �Eq. �1��.
Physically, they represent the coherent parts of the orbital fermionic
currents in the problem.
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each CuO2 unit cell repeats from unit cell to unit cell so that
the translational symmetry of the lattice remains unaltered.
These circulating current patterns are generated by a nearest-
neighbor repulsion V between Cu and O atoms in the CuO2
sheets. The effect of such a repulsive V term has been exten-
sively investigated in one-dimensional �1D� CuO chains,
where it has been shown to drive charge-transfer instabilities
and superconductivity.11–13 In Ref. 14, the existence of
current-loop ordering was not confirmed but the work was
carried out on a truncated effective t−J model of eight Cu
sites. Moreover, the ground state was spin polarized with
finite momentum, which would not be representative of the
large-scale physics of interest in the system. The truncation
of the Hilbert space used in Ref. 14 furthermore requires
much large values of onsite Coulomb repulsion on oxygen
sites that it is probably outside the parameter regime of the
high-Tc cuprates.15 This motivated the authors of Ref. 16 to
undertake a large-scale study of the issue of current-loop
ordering on much larger systems using the full three-band
model of the CuO2 planes via variational Monte Carlo simu-
lations. These authors found clear evidence for current-loop
ordering. Other types of current patterns and charge fluctua-
tions are also possible.1,17,18

II. FUNDAMENTALS

In this section, we present the effective model of fluctu-
ating orbital currents that we studied in this paper, along with
the definitions of the thermodynamic quantities we com-
puted, as well as some remarks on the critical exponents of
the problem with emphasis on the particular status of the
specific-heat exponent of the problem at hand.

A. Model

The effective model we performed Monte Carlo simula-
tions on has been derived from a microscopic description of
the CuO2 planes of high-Tc cuprates elsewhere.10,19 It turned
out to be a generalization of the model initially proposed to
describe the statistical mechanics of loop-current order2,3 in
which some terms allowed by symmetry were omitted. The
action S is written in the form S=SC+SQ, where SC is the
classical piece of the action, and SQ is part of the action that
is needed in the quantum domain of the theory. In this paper,
we will focus on discussing the effects of thermal fluctua-
tions, and we will therefore not need SQ. The classical part of
the action, SC, is given by10,19

SC = − � �
�r,r��

�KxJr
xJr�

x + KyJr
yJr�

y � − � �
��r,r���

Krr�
xy �Jr

xJr�
y + Jr

yJr�
x �

− �K4 �
�r,r��

Jr
xJr�

x Jr
yJr�

y . �1�

Here, �r ,r�� and ��r ,r��� denote nearest-neighbor and next-
nearest-neighbor summations, respectively. �=1 /T, where T
is temperature, and we work in units where Boltzmann con-
stant kB=1. We will only consider the directions � of the
current variables Jx,y, assuming as in other similar two-
dimensional �2D� models that their amplitudes are smoothly

varying with temperature and do not determine the critical
properties. Note that there is always also a current in the O-O
links whose magnitude is equal to that of Jx which has the
same magnitude as Jy. Therefore, no current flows out of any
O-Cu-O triangular plaquette. Due to the restriction that no
current flows out of any O-Cu-O plaquette, there is no need
to specify the O-O currents. The variables Jx and Jy are then
the same as the �= �1 and �= �1 Ising variables intro-
duced earlier.3 Fluctuations �Jr

x→−Jr
x ,Jr

y→Jr
y� corresponds

to going from the depicted current pattern �Fig. 1� to a new
one which is obtained by a counterclockwise rotation by
� /2, �Jr

x→Jr
x ,Jr

y→−Jr
y� corresponds to clockwise rotation of

� /2, and �Jr
x→−Jr

x ,Jr
y→−Jr

y� to a rotation of �.
If one ignores the next-nearest-neighbor terms and takes

Kx=Ky, one gets the Ashkin-Teller �AT� model,20 for which
several exact results are known21 asymptotically close to the
phase-transition lines. However, since the currents are bond
variables, one necessarily has an anisotropy in the nearest-
neighbor interactions,10,19 such that for r−r�= � x̂, Kx=Kl
and Ky =Kt, whereas when r−r�= � ŷ, Kx=Kt and Ky =Kl. It
is important to investigate whether this anisotropy is an ir-
relevant perturbation. We will in the following denote the
anisotropy by the parameter A�Kt /Kl. Similarly, it is inter-
esting to investigate the effect of the next-nearest-neighbor
interaction given by the parameter Krr�

xy =Kxy, when r−r�
= � �x̂+ ŷ� and Krr�

xy =−Kxy when r−r�= � �x̂− ŷ�.
Let us comment briefly on the terms appearing to quartic

order, most of which either are constants or renormalize the
quadratic piece of the action. Note that four Ising variables
of two distinct species all located on one single lattice site
simply contribute a constant to the action. If we now limit
ourselves to terms that have four J fields distributed on two
nearest-neighbor lattice sites, only two distinct possibilities
exist. First, we may have a term with three J’s on one lattice
site and one J on a nearest-neighbor site. This merely repre-
sents a renormalization of the quadratic couplings. Second,
we may have two J’s on one lattice site and another two on
a nearest-neighbor lattice site. Unless there are two distinct
species of J’s on each of the lattice sites, such a term will
represent a constant contribution to the action. If the J’s on
each lattice site are of distinct species, the term will be of the
AT form, as written above. We will ignore terms that have J
fields distributed on three or four distinct lattice sites, such as
for instance plaquette terms, as these are generated by much
higher order terms.10,19

B. Thermodynamic quantities

In this paper, we calculate the evolution of the specific
heat, the staggered orbital magnetic moment, as well as the
susceptibility of the staggered orbital magnetic moment as
we vary K4 in Eq. �1�. We also perform finite-size scaling on
the magnetization and the Binder cumulant �see below�. The
specific heat Cv is given by

Cv =
1

L2 ��SC − �SC��2� . �2�

Considering Fig. 2, we see that we may define a “pseu-
dospin” S on each lattice given by Sr��Jr

x ,Jr
y�. The various
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states of the system are then described by a four-state clock
pseudospin Sr= ��1, �1� on a two-dimensional square lat-
tice. We define the staggered order parameter in the standard
way it would be defined for a clock model, namely,

�Ms� �
1

L2	
�mx�2 + �my�2

2
� , �3�

where m	��rJr
	, 	� �x ,y�. The susceptibility of this stag-

gered order parameter is given by


s =
1

2L2T
���mx�2 + �my�2� − �
�mx�2 + �my�2�2� . �4�

We will contrast the singularities in these quantities with the
evolution of the anomaly in the specific heat as the parameter
K4 is varied. While the above staggered moment does not
couple linearly to an external uniform magnetic field, it
couples to a field-induced uniform magnetic moment via a
quartic term in the free energy. The field-induced uniform
magnetization must therefore have a nonanalytic behavior
across the phase transition where the staggered magnetiza-
tion associated with the ordering of the orbital currents sets
in. We will return to this point in Sec. IV.

For the purposes of extracting the critical exponent �, we
consider the Binder cumulant, defined by

G �
�m4�
�m2�2 , �5�

where m2= �mx�2+ �my�2, corresponding to the magnetization
order parameter ��m��, whose critical exponent � is given in
Eq. �6� for the AT model.21 In the ordered phase, G=1. For
an N-component order parameter, G= �N+2� /N in the disor-
dered phase. In our case, therefore, G will exhibit a rise from
one to two as the systems disorder. When computing this
quantity for different L and plotting it as a function of T, the
curves should in principle cross at the same point, thus de-
fining Tc. On the other hand, plotting it as a function of
L1/���T−Tc� / �Tc��, all the curves will collapse on top of each

other. By adjusting � to get data collapse, one obtains the
correlation length exponent. Furthermore, the order-
parameter exponent � is obtained from the magnetization Ms
for various system sizes by considering the quantity L�/�Ms,
and adjusting � and � so as to obtain data collapse when
plotting this quantity as a function of L1/���T−Tc� / �Tc��.

C. Critical exponents

Note that, although the Kx and Ky couplings between the
two different types of Ising fields in this model are
anisotropic,10,19,22 there is only one �doubly degenerate Ising�
phase transition in the system for Kxy =0; K4=0. Hence, as
the four-spin coupling K4 is changed from zero, the Ising
critical point evolves into a single phase-transition line with
nonuniversal critical exponents.21 In particular, the specific-
heat exponent 	 becomes negative, with the transition line
itself being a self-dual critical line.21 In this sense, the model
is similar to an isotropic AT model, where the exact result for
the critical exponents are known, and given by21

	 =
2 − 2y

3 − 2y
; � =

1

8
 2 − y

3 − 2y
� . �6�

From this, we deduce the susceptibility exponent �=14� and
the correlation length exponent �=8� from standard scaling
relations. Note that the ratios � /�=7 /4 and � /�=1 /8 are
universal and independent of y. �It is also interesting to note
that the anomalous scaling dimension �=1 /4 and the mag-
netic field exponent =15, precisely as in the 2D Ising
model�. Here y=2� /� and cos���= �e4K4/Tc −1� /2.21 Hence,
for K4�0, we have � /2���2� /3, such that 1�y�4 /3.

These exponents are plotted in Fig. 3. The most extreme
deviation from the 2D Ising values 	=0, �=1 /8, �=7 /4,
and �=1 is given by the case K4→−� and y=4 /3, where
	=−2, �=1 /4, �=7 /2, and �=2. Note the increase in � and
�, �which implies a weak increase in � for increasing −K4
due to the proportionality factors 14 and 8 given below Eq.

S = (1, 1)S = (−1, 1)

S = (1,−1)S = (−1,−1)
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FIG. 2. �Color online� An illustration of the pseudospin S
= �Jr

x ,Jr
y� we used to compute the staggered order parameter and its

susceptibility �Eqs. �3� and �4��.
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FIG. 3. �Color online� Critical exponents 	, �, and � from the
Ashkin-Teller model, as a function of the four-spin coupling �cK4

�0 �Ref. 21�. In this parameter range, we have −2�	�0, 1 /8
���1 /4, 7 /4���7 /2, and 1���2.
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�6�� while we have a substantial reduction in 	 to negative
values as −K4 increases. This is traceable to the numerator
2−2y in 	 compared to the numerator 2−y in �, �, and �
�while � and  are independent of y�. Hence, the specific-
heat exponent stands out as very special in model Eq. �1�.
This fact is by far the single most dramatic difference be-
tween the critical behavior of Eq. �1� and the 2D Ising
model. The K4 term with K4�0 simultaneously suppresses
singularities in the specific heat, and enhances singularities
both in the susceptibility corresponding to the staggered or-
bital magnetization of Fig. 1 and in the one associated with a
field-induced uniform magnetization �see Sec. IV�.

III. MONTE CARLO RESULTS

The Monte Carlo computations were performed using the
standard single-spin update Metropolis-Hastings
algorithm,23,24 making local updates of the Ising fields Jr

x and
Jr

y, as well as local updates of the composite Ising field Jr
xJr

y

at each lattice site. The system grid is defined by two two-
dimensional subgrids, one for each Ising field, and the local
updates were performed for all points on the grid. All the
Ising fields on both subgrids were initially set to one. We
started all simulations at the high-temperature end, and dis-
carded the first 100 000 sweeps for the purpose of initially
thermalizing the system. After that, measurements were
made for every 100 sweeps. The system sizes that were con-
sidered were L�L with L=64,128,256,512. For each value
of T, we ran up to 3�106 MC sweeps for L=64,128,256,
and sampled the system for every 100 MC sweeps over the
lattice, while we used 5�106 MC sweeps for L=512 and
sampled the system for every 150 MC sweeps over the lat-
tice. We have checked that satisfactory convergence is well
established by the time we get to system sizes of L=512, and
we therefore largely present results for these largest systems
only, apart from Fig. 6 and the finite-size scaling results that
will be presented for the Binder cumulant �see below�. In all
simulations, we have set Kl=1.0, such that all other cou-
plings are measured relative to this parameter. In these units,
the critical temperature Tc of the system for A=1.0, Kxy =0,
and K4=0 is given by Tc=2 / ln�1+
2��2.27. This sets the
scale of the critical temperatures in the plots we will show
below.

A. Specific heat

Let us first investigate what effect Kxy has on the logarith-
mic singularity of the 2D Ising model. In Fig. 4, we show the
specific heat for A=1.0 and K4=0, upon varying Kxy

=0.0,0.1,0.2,0.3. We have limited the variations in Kxy be-
cause it can be shown in mean-field calculations that the
order parameter changes the translational symmetry for large
enough Kxy and a diagonal “striped” order is favored. It is
seen that the Kxy term in this parameter range leaves the
logarithmic singularity of the anisotropic double-Ising model
�Eq. �1� with Kxy =0 and K4=0� unaltered, only the ampli-
tude of the singularity is changed.

We now investigate the effect of four-spin interactions
�K4. We will only consider negative values of K4 in this

paper. Then the four-spin term tends to promote a nonuni-
form ground state with antiferromagnetic ordering in the
composite variable Jr

xJr
y, thus frustrating the Ising terms in

Eq. �1�. It is known from the phase diagram of the AT
model20 that the ordered phase has a different symmetry in
the regions −1�K4 /Kl�1, K4 /Kl�−1, and K4 /Kl�1. The
region of special interest is −1�K4 /Kl�0 in which the AT
model has a self-dual line of critical points.25,26 This is con-
sistent with the microscopic model, which may exhibit a
negative sign of the four-spin interaction term.

We first consider the case of isotropic Ising coupling Kl
=Kt, i.e., A=1.0, next-nearest-neighbor coupling Kxy =0.0,
and increasing �K4�. We use this case for reference, as this
parameter set represents the standard isotropic AT model.3,20

The results for the specific heat are shown in Fig. 5. The
logarithmic specific heat of the Ising model disappears to be
replaced by a bump whose extent in T increases as �K4� in-
creases. This is consistent with the asymptotic critical
exponents.20

In Fig. 6, we investigate how well these results are con-
verged when increasing the system size through the values
L=64,128,256,512. It is seen that the results appear well
converged when L has reached 256, in particular the double-
peak structure in CV that is present for small system sizes
disappears upon increasing L. In contrast to the Binder cu-
mulant �see below�, we have not attempted a data collapse of
the specific heat by trying a scaling form CV�T ,L�
=L	/�C��L1/��T−Tc� /Tc� and adjusting 	 to obtain data col-
lapse. The reason is that we anticipate a negative specific-
heat exponent, such that corrections to the above scaling
form will be large, thus preventing data collapse. Even for
positive 	, it is well known that corrections to scaling are
substantial for the specific heat. This simply means that the
specific heat by itself oddly enough is not a very useful quan-
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FIG. 4. �Color online� Specific heat as a function of temperature
T for the classical part of the model in Eq. �1�, with A=1.0 and
K4=0.0, for various values of Kxy =0.0,0.1,0.2,0.3, and system size
L=512. The amplitude of the logarithmic specific heat of the Ising
model �Kxy =0� is enhanced as Kxy increases but the anomaly re-
mains logarithmic. The critical temperature of the 2D pure Ising
model is given by Tc=2 / ln�1+
2��2.27 in units where Boltzmann
constant kB=1. Note also that for this set of parameters, Kxy hardly
alters Tc of the model with Kxy =0.
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tity from which to extract precise values of 	 in Monte Carlo
computations on practical system sizes. Other techniques are
required for this, see, e.g., Ref. 27. However, the main point
of the present paper is not to determine a precise value of 	
numerically but rather to demonstrate �including all correc-
tions to scaling� that a striking suppression of the prominent
logarithmic singularity of the 2D Ising model takes place as
�K4� is increased. Figure 6 clearly shows that the suppression
is not a finite-size artifact. Note in particular that the relative
height of the bump in CV for nonzero �K4� is suppressed

compared to the Ising singularity as L increases.
We next consider the effect of increasing the anisotropy

�A�1�, such as to weaken the ordering in each of the Jy�r�
and Jx�r� Ising fields. Note that, however, because the aniso-
tropy introduced is equal for both of the Ising fields �only the
direction of the anisotropy is changed�, the model only has
one single critical point even in the absence of a K4 coupling.
The model is then merely two copies of one and the same
anisotropic 2D Ising model. However, an increase in �K4� is
expected to have a stronger effect for A�1.0 than when A
=1.0 due to the weaker ordering and reduced critical tem-
perature. The bump in the specific heat is then accordingly
smoother as seen in Fig. 7 compared to Fig. 5.

We now repeat the above computations for A=1.0 with
Kxy =0.1, 0.2, and 0.3. This coupling tends to frustrate the
Ising ordering since a large Kxy tends to promote striped
order due to the diagonal anisotropy �represented by a
change in sign in Kxy upon � /2 rotations of next-nearest-
neighbor vectors�. It is of interest to see how the presence of
Kxy affects the introduction of the AT coupling K4. Naively,
since the coupling Kxy promotes striped order and frustrates
the uniform order promoted by Kx and Ky, we would expect
that the suppressed anomalies are pushed to lower tempera-
tures as Kxy is increased. In Figs. 8–10, we show the specific
heat for the same sets of parameters as in Fig. 5 except that
now Kxy =0.1,0.2,0.3, respectively.

We see that the effect of Kxy is to increase the sharpness
of the bump in the specific heat while the effect of K4 again
is to widen the bump �in the presence of Kxy�. We also see
that the anomalies that remain are pushed slightly down-
wards in temperature compared to the case Kxy =0 �cf. the
results of Fig. 5�. The change is however only minor for the
cases Kxy =0.1 and Kxy =0.2, consistent with the weak sup-
pression of the critical temperature we found upon increasing
Kxy at K4=0 in Fig. 4. The conclusion we draw from these
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FIG. 5. �Color online� Specific heat as a function of temperature
T for the classical part of generalized AT model Eq. �1�, with A
=1.0 and Kxy =0.0, for various values of K4=0.0,−0.1,−0.25,−0.5,
and system size L=512. The vertical scale is in units of
kB /unit cell. The logarithmic specific-heat singularity of the Ising
model �K4=0� is eliminated and replaced by a bump whose width
increases as �K4� increases. The arrow in the lower right panel indi-
cates Tc as obtained from the peak in the susceptibility 
s.
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FIG. 6. �Color online� Specific heat as a function of temperature
T for the classical part of generalized AT model Eq. �1�, with A
=1.0 and Kxy =0.0, for various values of K4=0.0,−0.1,−0.25,−0.5,
and system size L=64,128,256,512. The vertical scale is in units
of kB /unit cell. The logarithmic specific-heat singularity of the
Ising model �K4=0�, is eliminated and replaced by a bump whose
width increases as �K4� increases. Note how the double bump in CV,
which is present at smaller system sizes, disappears when L is in-
creased. When L=512, the results appear to be well converged.
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FIG. 7. �Color online� Specific heat as a function of temperature
T for the classical part of generalized AT model Eq. �1�, with A
=0.5 and Kxy =0.0, for various values of K4=0.0,−0.1,−0.25, and
system size L=512. The vertical scale is in units of kB /unit cell.
Compared to the case shown in Fig. 5, with A=1.0, precisely the
same trends are seen in the evolution of the anomaly as the AT
coupling �K4� is increased, only slightly more pronounced. The ar-
row indicates Tc as obtained from the peak in the susceptibility 
s.
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computations is that the singularity of the specific heat of the
Ising case is removed by the coupling K4 is included. The
resulting bump in the specific heat becomes sharper for in-
creasing Kxy at finite K4.

Finally, we consider the most general case of anisotropic
Ising coupling A=0.5 and finite Kxy =0.3, as �K4� is increased,
shown in Fig. 11.

It is clear from Fig. 11 that the introduction of anisotropy
A=Kt /Kl=0.5 widens the width of the bump in the specific
heat. This is easily understood since increasing anisotropy
implies that the magnitude of K4 relative to the Ising cou-
plings in the problem will increase. The effect of a given
increase in K4 is therefore more strongly felt. Moreover, as in
the isotropic case, the anomalies are pushed down in tem-

perature compared to the case Kxy =0 �cf. the results of Fig.
7�.

Concluding this section on the results for the specific heat,
we mention that we have also, at the early stages of this
work, performed a rather rudimentary comparative study of
the specific-heat anomaly in the 2D Ashkin-Teller model and
the 2D XY continuous rotor model with a four-fold
symmetry-breaking term, on lattice sites up to L=32. This
numerics is insufficient to draw any conclusions about the
fluctuation spectrum on the disordered side of the transition,
close to the transition, as the symmetry-breaking field be-
comes small. That is, the simulations per se do not allow us
to conclude anything about the perturbative relevance or ir-
relevance of the symmetry-breaking term. What we have
been able to confirm is that the specific-heat anomaly of the
2D Ashkin-Teller model is indistinguishable from the 2D XY
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FIG. 8. �Color online� Specific heat as a function of temperature
T for the classical part of generalized AT model Eq. �1�, with A
=1.0 and Kxy =0.1, for various values of K4=0.0,−0.1,−0.25,−0.5,
and system size L=512. The arrow indicates Tc as obtained from
the peak in the susceptibility 
s. The vertical scale is in units of
kB /unit cell.
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FIG. 9. �Color online� Specific heat as a function of temperature
T for the classical part of generalized AT model Eq. �1�, with A
=1.0 and Kxy =0.2, for various values of K4=0.0,−0.1,−0.25,−0.5,
and system size L=512. The arrow indicates Tc as obtained from
the peak in the susceptibility 
s. The vertical scale is in units of
kB /unit cell.
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FIG. 10. �Color online� Specific-heat anomaly as a function of
temperature T for the classical part of generalized AT model Eq. �1�,
with A=1.0 and Kxy =0.3, for various values of K4=0.0,−0.1,
−0.25,−0.5, and system size L=512. The vertical scale is in units of
kB /unit cell.
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FIG. 11. �Color online� Specific-heat anomaly as a function of
temperature T for the classical part of generalized AT model Eq. �1�,
with A=0.5 and Kxy =0.3, for various values of K4=0.0,−0.1,
−0.25, and system size L=512. The vertical scale is in units of
kB /unit cell.
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continuous rotor model with a symmetry-breaking term, pro-
vided the symmetry-breaking term is large.

B. Ms, �s, and the critical exponents � and �

Let us now study the order parameter and susceptibility of
the order parameter, Ms and 
s, Eqs. �3� and �4�. We have
first chosen parameters A=1.0, Kxy =0, and varied K4, for
which the evolution of the specific-heat anomaly is shown in
Fig. 5. The results for Ms and 
s are shown in Figs. 12 and
13, respectively.

We see that the staggered magnetization retains a nonana-
lytic behavior as in the pure Ising case even for K4=−0.5.
This contrasts sharply with the lack of any traces of singular
behavior in the specific heat �cf. Fig. 5�. From Fig. 13 we see

the same trend, namely, that the susceptibility retains a
nonanalytic feature even for the largest K4 values we have
considered, and which suffice to completely suppress the sin-
gularity in the specific heat.

We have repeated these calculations with Kxy =0.3. The
results are shown in Figs. 14 and 15, with essentially the
same results as in Figs. 12 and 13.

We next attempt to estimate the critical exponents � and �
for the model Eq. �1�, for the set of parameters A=1.0, Kxy

=0.1, and K4=−0.25. �For the same set of parameters but
Kxy =0 and K4=0, see comments below�. We base our calcu-
lations of these critical exponents on using Binder cumulant
Eq. �5� and the scaled staggered magnetization L�/�Ms �cf.
Eq. �3��. For these computations, we have used up to 3
�106 sweeps over the lattice for each temperature. In addi-
tion, we have used Ferrenberg-Swendsen �FS� multihisto-
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FIG. 12. �Color online� The staggered order parameter, Eq. �3�,
as a function of temperature T for the classical part of generalized
AT model Eq. �1�, with A=1.0 and Kxy =0.0, for various values of
K4=0.0,−0.1,−0.25,−0.5, and system size L=512.
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FIG. 13. �Color online� The susceptibility of the staggered mag-
netization within each unit cell, Eq. �4�, as a function of temperature
T for the classical part of generalized AT model Eq. �1�, with A
=1.0 and Kxy =0.0, for various values of K4=0.0,−0.1,−0.25,−0.5,
and system size L=512. Note that the susceptibility retains the
nonanalytical features of the Ising case even for parameters where
the specific-heat anomaly is completely suppressed.
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FIG. 14. �Color online� The staggered order parameter, Eq. �3�,
as a function of temperature T for the classical part of the general-
ized AT model Eq. �1�, with A=1.0 and Kxy =0.3, for various values
of K4=0.0,−0.1,−0.25,−0.5, and system size L=512.
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FIG. 15. �Color online� The susceptibility of the staggered mag-
netization within each unit cell, Eq. �4�, as a function of temperature
T for the classical part of the generalized AT model Eq. �1�, with
A=1.0 and Kxy =0.3, for various values of K4=0.0,−0.1,−0.25,
−0.5, and system size L=512. Note the marked increase in the
susceptibility as −K4 is increased, in contrast to the suppression of
the anomaly in the specific heat.
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gram reweighting28 of the raw data for the Binder cumulant
in order to improve on the accuracy. The method of compu-
tation is described in Sec. II C. In Fig. 16, we show the
Binder cumulant for various system sizes as a function of the
temperature T without reweighing. The crossing points pro-
vide an estimate for Tc. Even in the absence of FS reweigh-
ing, there is very little scatter in these crossing points, and Tc
is determined with an uncertainty of much less than 1%.
With Ferrenberg-Swendsen reweighing, this picture remains,
as is seen from Fig. 17 where reweighing is used. An accu-
rate estimate for Tc will turn out to be crucial in the follow-
ing. Note also that the estimates we get for Tc from the
crossing of lines in the Binder cumulant are well in agree-
ment from the somewhat cruder estimates we would obtain

from determining the temperatures at which the peaks of the
staggered susceptibilities occur.

In Fig. 18, we replot the same Binder cumulant, now as a
function of the quantity L1/��T−Tc� /Tc, using estimates for
Tc from Fig. 17 and adjusting � to get data collapse. While
we see that the above computations do not allow us to extract
extremely precise values of �, it does allow us to conclude
that the exponent � is consistent with the values obtained
from the Ashkin-Teller model, and that � appears to be en-
hanced compared to the 2D Ising value �=1.

We next compute the quantity L�/�Ms as a function of the
quantity L1/��T−Tc� /Tc to obtain the order-parameter expo-
nent � by using the values of Tc and � obtained from the
scaled Binder cumulant in Fig. 18, and then adjusting � to
get data collapse of all magnetization curves for various val-
ues of L. The result of this procedure is shown in Fig. 19.
Again, from the above we cannot conclude anything with
great precision about the exponent � other than saying that it
is consistent with the exact values that are known for the
Ashkin-Teller model, i.e., Eq. �1� with Kxy =0.

We have also checked the exponents for the same set of
parameters as above except that Kxy =0. We draw the conclu-
sion that, to the level of precision of the above computations,
the exponents are not altered from the Ashkin-Teller case.
However, when we repeat the procedure for the same set of
parameters as above except that Kxy =0.3, we find that there
is a clear deviation, and that the exponents � and � definitely
do not take Ashkin-Teller values. In particular, we get opti-
mum data collapse for � clearly less than 1/8. From this, we
infer that, while the parameter Kxy may be perturbatively
irrelevant, it may alter the universality class of the phase
transition of the model if it is large enough. We also note that
the reason that Kxy appears to have much less of an effect on
the transition when K4=0 compared to when K4=−0.25 is
that the latter case represents a frustration of the ferromag-
netic Ising ordering that lowers the critical temperature of the
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FIG. 16. �Color online� The Binder cumulant G, Eq. �5�, as a
function of T for model Eq. �1�, for A=1.0, Kxy =0.1, and K4=
−0.25 for various system sizes, in the absence of Ferrenberg-
Swendsen reweighing. The inset shows a blowup of the temperature
region where the lines for various system sizes cross, providing an
estimate for Tc.
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FIG. 17. �Color online� The Binder cumulant G, Eq. �5�, as a
function of T for model Eq. �1�, for A=1.0, Kxy =0.1, and K4=
−0.25 for various system sizes, using Ferrenberg-Swendsen re-
weighing. The inset shows a blowup of the temperature region
where the lines for various system sizes cross, providing an esti-
mate for Tc. Note the consistency of the estimate for Tc compared to
Fig. 16.
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FIG. 18. �Color online� The Binder cumulant G, Eq. �5� as a
function of the quantity L1/��T−Tc� /Tc, for model Eq. �1�, for A
=1.0, Kxy =0.1, and K4=−0.25 for various system sizes. Ferrenberg-
Swendsen reweighing of the data is used. We have taken estimates
for Tc from Fig. 17 and adjusted the correlation length critical ex-
ponent � to achieve the best data collapse. As is seen, the optimal �
is extremely sensitive to the chosen value of Tc.
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system and enhances the effect of introducing Kxy, which
also frustrates the ferromagnetic Ising ordering, and pro-
motes striped ordering.

Nonuniversality in � due to the presence of the parameter
K4 in the problem means that � in principle should vary
slightly as we cross the pseudogap line vertically in the
�x ,T�-phase diagram of high-Tc cuprates as the doping is
varied, if we assume that the parameters of the effective
model Eq. �1� varies as we move along the pseudogap line.
In particular, a variation in � with K4 is clearly seen from
Fig. 12 although we have not performed a detailed finite-size
scaling analysis to determine � as a function of K4. We also
note from Fig. 4 that introduction of Kxy does not change the
universality class of the transition when K4=0. We may
therefore quite reasonably assume that the presence of Kxy

does not change the Ashkin-Teller universality class of the
phase transition when K4 is present, provided Kxy is not too
large. We may then deduce that, for negative K4, we will
have −2�	�0, 1 /8���1 /4, and 7 /4���7 /2. A sup-
pression of the specific-heat anomaly as seen for the case
K4=−0.25 puts us at 	�−0.37, ��0.15, and ��2.07. The
weak variation in the exponent � from the Ising value 1/8 is
due to the near cancellation of the rather large, but opposite,
variations in the specific-heat exponent 	 and the suscepti-
bility exponent �, consistent with the scaling law 	+2�+�
=2. It is precisely the large variation in 	 that wipes out the
specific-heat anomaly that also produces a large enhance-
ment of the susceptibility of the staggered orbital magnetiza-
tion, see Fig. 3.

C. Comparison of calculated specific heat with experiments

We use the results in Figs. 4–11 to estimate the peak value
of the specific-heat bump expected due to the transition to
see why it may be unobservable in experiments performed so

far. In comparing with experiments, the following should be
borne in mind. The ordering below the transition temperature
is three dimensional �3D�. Hence, the observed specific heat
will be that of the form calculated above as temperature is
decreased toward T�, followed by a singularity characteristic
of the 3D Ising model near T� and below it. However, the
integrated value of specific heat divided by T under the sin-
gularity is only a fraction of the total entropy due to the loop
order degrees of freedom. As we discuss below, the latter
itself is more than an order of magnitude smaller than the
entropy due to fermionic excitations in the same temperature
range.

The area ��Cv�T� /T�dT over all temperatures in each of
the curves in Figs. 4–11 is 2 ln�2�kB /unit cell, reflecting that
the calculations are performed for 2 Ising degrees per unit
cell. Given that the ordered moment due to orbital currents is
estimated in neutron-scattering experiments to be
10−1�B /unit cell, the integrated value is expected to be
2 ln�2�kB /unit cell multiplied by O�10−2�. To compare with
experiments, we may consider calculations for the case Kxy

=0 and �K4 /Kl� between, say 0.25 and 0.5. The peak value of
the specific heat from Figs. 4–11 is then expected to be less
than 0.5�10−2kB per unit cell or less than about 0.05 J/mol/
deg. This should be compared with the measured specific
heat,29 which at about 200 K is about 200 J/mol/deg. In Ref.
29, the electronic specific heat is estimated by subtracting the
specific heat for a similar nonmetallic compound to be about
2 J/mol/deg. Therefore, the bump has a peak which is 3–4
orders of magnitude smaller than the total specific heat, and
1–2 orders of magnitude smaller than even the deduced elec-
tronic specific heat. Given that the specific-heat bump is
spread out over temperatures of O�2T��, it is not surprising
that with pseudogap temperatures of O�200� K or higher, it
has gone undetected. There are underdoped cuprates with
lower T�, in which a bump in the specific heat with magni-
tude of order that suggested here is claimed30 to be observed.

IV. UNIFORM SUSCEPTIBILITY

Just as the onset of antiferromagnetic spin order has a
weak parasitic nonanalytic effect on the uniform magnetic
susceptibility, the onset of loop-current orbital magnetic or-
der may be expected to have a similar effect on the uniform
magnetic susceptibility. Such an effect has indeed been mea-
sured recently in careful studies across T��x�.9

Since the uniform magnetization is a parasitic effect on
the staggered magnetization, we can calculate its temperature
dependence by a Landau theory in which we consider the
free energy for the staggered magnetization but consider the
minimal coupling of the uniform magnetization to the stag-
gered magnetization. Let Ms be the staggered magnetization
and �M� be the thermal average of the uniform magnetization
in the presence of an external field H. Let F0�Ms0� be the free
energy for the Ms in the absence of an external magnetic
field H. Quite generally, the leading terms in the free energy
are given by

F = F0�Ms� +
M2

2
0
− MH +

C

2
Ms

2M2 + . . . . �7�

Here, C is a coefficient which gives the competition between
the staggered and uniform magnetizations. The sign of C is
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FIG. 19. �Color online� The scaled staggered order parameter
L�/�Ms �cf. Eq. �3�� as a function of the quantity L1/��T−Tc� /Tc, for
the model Eq. �1�, for A=1.0, Kxy =0.1, and K4=−0.25 for various
system sizes. Ferrenberg-Swendsen reweighing of the data is used.
We have taken estimates for Tc from Fig. 17 and estimates for �
from Fig. 18, and adjusted the order-parameter exponent � to
achieve the best data collapse.
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positive if, as is reasonable, the staggered magnetization de-
creases when the uniform magnetization increases, and vice
versa.

This form of the free energy gives correct answers only in
the regime in which the staggered susceptibility is small and
therefore is not valid very close to the transition. Also, the
susceptibility calculated is for magnetic field parallel to the
direction of sublattice magnetization. In the simplest theory,
this direction is perpendicular to the Cu-O planes. In the
experiments,5 an angle closer to � /4 has been deduced for
which some theoretical justifications are provided.16,31 Since
the experiments are done in powder samples, we will ignore
this issue for the present.

Let 
s0���2F0 /�Ms0
2 �−1 be the order-parameter suscepti-

bility, which is calculated above. The subscript 0 in 
s0 indi-
cates the quantity in the absence of �M�. 
0 is the uniform
susceptibility in the absence of Ms. Then in the presence of
�M�, induced by the external field H, the condition

�F

�M
= 0, �8�

gives

�M�

0

− H + C�M��Ms
2� = 0. �9�

This gives �M��
H in linear response �i.e., low H�, with


 =

0

1 + C
0�Ms
2�

. �10�

Here, �Ms
2� is the thermodynamic squared magnetization in

the presence of �M�, and 
 is the uniform susceptibility. We
may write Eq. �10� as


 =

0

1 + C
0��Ms�2 + T
s�
. �11�

Also, quite generally, the order-parameter susceptibility is


s
−1 =

�2F

�Ms
2 = 
s0

−1 + C�M2� = 
s0
−1 + CT
 . �12�

This gives


s =

s0

1 + CT

s0
. �13�

Thus, using Eqs. �12� and �13�, we may write 
 in terms of
known quantities 
0 and 
0s to obtain

CT
s0
2 + 
 − 
0 = 0. �14�

For T�Tc, where the above treatment is valid, we have
4CT
s0
0�1 so that


 � 
0 − CT
s0
0
2, �T − Tc�/Tc � 1. �15�

The uniform susceptibility is therefore predicted to decline
from its constant Pauli value at far above Tc in the same
range that 
s0 shows a rise. We suggest that the observed
slow decrease in 
�T� for temperatures well above T� be
fitted to such a form.

Well below Tc, the model behaves as an Ising model.
Therefore, the contribution of the ordered moments to the
uniform susceptibility approaches zero exponentially as T
→0.

A. Mean-field jump in d� ÕdT at Tc

In a mean-field calculation 
s0 does not change above Tc.
There is, however, a jump in d
 /dT expected at Tc. The
experimental results have been quantified by such a jump.9

To compare with available experimental results, we approxi-
mate Eq. �12� as


 � 
0 − C
0
2�Ms�2, �16�

so that

d


dT
= − C
0

2d�Ms�2

dT
. �17�

Here, a temperature independent 
0 is assumed. We now
need to know the right side of Eq. �17�. This may be esti-
mated as follows. Returning to Eq. �7�, we may write F0�Ms�
as

F0�Ms� = 	̃/2
�T − T0

��
T0

� Ms
2 +

�

4
Ms

4 + . . . . �18�

This defines the transition temperature T0
� in the absence of

an external magnetic field H, i.e., for M =0. It also defines an
inverse susceptibility 	 for Ms, which we expect to be of the
same order as to the inverse of the density of states at the
Fermi surface, or equivalently of order 
0

−1. Combining Eq.
�18� with the third term in Eq. �7�, we see that a finite M
leads to a decrease in the transition temperature T�, with

T�

T�
� CM2/	̃ . �19�

Note also that

Ms
2 � Ms�0�2 �T0

� − T�
T0

� , �20�

where Ms�0�2 is the zero-temperature value of Ms
2. Using this

in Eq. �17�, the jump in the derivative of the susceptibility at
T� is given by

T0
�


0

d


dT
= CMs�0�2
0. �21�

Now we need an estimate of CMs�0�2. This can be obtained
from Eq. �19� if we note that the transition temperature will
be reduced to zero, i.e., T�

T� =1, for some magnetization M�.
The magnitude of M� has to be the same order as Ms�0� at
zero field. Therefore

CMs�0�2/	̃ � 1. �22�

Using this above, the jump in d
 /dT at T� is given by

T0
�


0

d


dT
� 	̃
0 � 1, �23�

where we have used the estimate for 	̃ estimated earlier.
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In the experiments reported in Ref. 9, a value of
T0

�


0

d

dT

between 0.2 and 0.3 has been deduced. This should be con-
sidered in good agreement with the estimate of O�1�. The
weak assumptions in the analysis above are the lack of
knowledge of the numerical constant between 	̃ and 
0

−1, and
the unknown numerical constant on the right-hand side of
Eq. �22�, instead of one. However, they cannot be off by
more than an order of magnitude from those assumed. In a
mean-field calculation 
s0 does not change above Tc. There
is, however, a jump predicted in d
 /dT expected at Tc.

V. SUMMARY

We have studied the evolution of the specific heat and
other thermodynamic properties in an effective theory of
fluctuating orbital currents in high-Tc cuprates. The motiva-
tion for the work has been to see if the finite-temperature
breakup of a proposed ordering associated with a loop-
current pattern is consistent with both the existence of an
order parameter in the pseudogap phase below a temperature
T��x�, and with an absence of an observed singularity in the
specific heat and a weak singular feature in the uniform mag-
netization at T��x�. This is a first step toward investigating,
through quantum Monte Carlo simulations, whether the
quantum breakup of such order gives rise to quantum critical

fluctuations that could possibly explain the anomalous trans-
port properties in the normal state of these compounds, as
has been proposed in analytic calculations.3 In this paper, we
have shown that the effective-field theory of the particular
proposed order of orbital currents within a CuO2 plane
passes this test by destroying the order while exhibiting no
divergence in the specific heat. Instead, we have found
bumps which we have estimated to be of a magnitude that
are unobservable in experiments done so far. Moreover, we
find a uniform magnetic susceptibility with a nonanalytic
behavior as a function of temperature as the phase transition
is crossed. From a technical point of view, a principal result
of our calculations is that the anisotropy considered in the
Ashkin-Teller model as well as the next-nearest-neighbor in-
teractions, in the range of parameters considered, are irrel-
evant perturbations.
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